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Abstract SDN network is a dynamic, controllable, cost-
effective and adaptable system. It is suitable for commu-
nication networks with high bandwidth and high dynamic
characteristics. Therefore, combining SDN ideas with the
new generation of LEO satellite networks can achieve more
flexible monitoring and management of the network, and
can make the network expansion more convenient. Joint the
Depth-First-Search (DFS) idea and Dijkstra algorithm for
the huge numbers of LEO mobile satellite network based
on SDN is proposed to improve the computational effi-
ciency and the reliability of calculation result. Moreover, the
communication performance of space-based network based
on SDN and traditional space-based network is compared
and analyzed. The simulation results show that the huge
numbers of LEO mobile satellite network based on SDN
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breaks through the performance limitations of the traditional
network architecture, and it can achieve better performance
of the network.
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1 Introduction

With the development of Space-Ground integrated network,
base station in the traditional ground mobile cellular net-
work cannot be deployed to the particularly complex geo-
graphical environment, so the research of low earth orbit
(LEO) satellite network technology has become a hot topic
[1]. In order to realize the real-time access of small power
mobile terminals and the seamless global coverage of satel-
lite signals, there are more and more satellite nodes in the
LEO satellite network being deployed, so the study of LEO
satellite network characteristics and related routing algo-
rithms has become an urgent issue to be solved. With the
increase of the number of satellites, the topological structure
of the satellite network changes faster and faster, and the
routing calculation becomes more difficult. We use routing
algorithm based on the idea of virtual topology [2, 3], which
is widely used for routing calculation in the LEO satellite
network. When routing the static topology within each time
slice, we introduce the Depth-First-Search (DFS) algorithm
[4, 5] and Dijkstra algorithm [6], and combine them together
to improve the computational efficiency and the reliability
of the calculation results.

Because of the large number of nodes in the network
and the complexity of the network deployment, it is diffi-
cult to control the distribution of data traffic in the network,
so as to the management of the network. The new network
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Fig. 1 Iridium system 3D view

architecture of the software defined network (SDN) [7, 8]
separates data layer and control layer. The control layer is
monitoring the whole network, a comprehensive analysis of
the real-time information on the network traffic distribution
and the network node load is underway, according to the
information, the optimal path is calculated. And it controls
the equipment in the network to transmit data and provides
real-time management and maintenance to the network to
improve the operating efficiency and the stability of the net-
work. So combining SDN ideas with the new generation of
LEO satellite networks [9–13] can effectively improve the
network performance.

The rest of this paper is arranged as follows. Section 2 intro-
duces the system model used in this paper. Section 3 intro-
duces the routing algorithms for LEO network. The analysis
and the simulation results will be described and shown in
Section 4. And Section 5 gives a conclusion of this paper.

2 System model

The iridium system is a typical LEO satellite system and
built by Motorola. It consists 66 LEO satellites, the weight
of each satellite is about 689 kg, the 66 satellites are equally
distributed on 6 orbits, each orbit having 11 satellites with a
track height of about 780km and the angle between adjacent
orbital planes is 30 degrees, the inclination of the orbit is
86.4 degrees. The satellite running speed is 27000km/h, its
operating cycle is about 1.66h, which is 100min.

Based on the orbit parameter, we build the iridium system
in the STK environment. Figure 1 shows the 3D view of
Iridium system.

Figure 2 shows the 2D view of Iridium system. We can
see from it that when spreading the topological structure
of iridium system into 2D view, the topological struc-
ture between 4 adjacent stars is parallelogram, and around

Fig. 2 Iridium system 2D view
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Fig. 3 Link between L1-1 and L1-11 satellites

each satellite there are 4 communication links, and the 4
communication links are formed by linking two adjacent
satellites in the same orbit and two satellites in the adjacent
orbits.

In order to study the satellite routing algorithm, we need
to understand the inter-satellite link, because the changes of
link states will lead to changes in the network topology.

We set up the inter satellite link to observe its link
status in iridium communication system built in the STK

environment. In this paper, 4 links are set up to be observed.
Among these 4 links, two are formed between two adjacent
satellites in the same orbit and the other two are formed
between two adjacent orbits.

Figures 3 and 4 show the inter-satellite link between two
adjacent satellites in orbit 1. It can be seen that the inter
satellite links between two adjacent satellites on the same
orbit are always connected, so they can communicate with
each other at any time.

Fig. 4 Link between L1-1 and L1-2 satellites
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Fig. 5 Link between L1-1 and L6-4 satellites

Figures 5 and 6 show the inter-satellite link between two
satellites in the adjacent orbits. It can be seen that the inter-
satellite link between two satellites in the adjacent orbits
is only partially connected and they can communicate only
when connected.

To study the specific link duration, we use the link opera-
tion report between the first satellite in orbit 1 and the fourth
satellite in orbit 6.

Figure 7 shows the specific link duration between L1-
1 and L6-4. It can be seen that the shortest link duration
between adjacent orbits is 777.189 seconds, the longest
is 777.197 seconds, and the average connection time is
777.192 seconds, about 13 minutes.

Thus, source and destination are known when designing
routing algorithms at the point of data communication. The
time required to compute a required reliable path should

Fig. 6 Link between L1-1 and L2-10 satellites
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Fig. 7 Link report between
L1-1 and L6-4 satellites

at least be less than 13 minutes. If computing a required
path takes too long, the topology of the satellite network
will change and the packets that are being transmitted may
not find the correct path. If the routing update time is too
long, packets will be required to be retransmitted, which
will result in higher end-to-end delay and higher packet loss
rate.

Therefore, in the process of route discovery, the effi-
ciency of the routing algorithm should be as high as passi-
ble, so that it can better adapt to the requirements of the fast
changing topology of LEO satellite communication system.

2.1 Software defined network

Software defined network is a new type of network archi-
tecture. It makes the whole network architecture more flat
and centralized.

Figure 8 shows the SDN framework, the SDN network
consists of application layer, control layer and data layer.
The core idea is to separate the control plane of the network
from the data plane. SDN network adopts centralized man-
agement mode and the control layer has a global view of
the network, include status information and load conditions
of all devices in the network, therefore, the control layer
in SDN network can control and manage the network more
reasonably according to the real-time information of the net-
work. It can effectively improve the stability and security of
the network.

In SDN network, the underlying communication equip-
ment transmits data according to control command from the
control layer, which is specified according to the flow table
items sent by the control layer. There is a communication
link between every device and the controller, and it follows
the OpenFlow protocol.

Network control is directly programmable because it is
decoupled from forwarding functions, making the deploy-
ment of network protocols and the expansion of networks
more convenient.

Figure 9 shows the communication mode between dif-
ferent layers of SDN network. The communication between
the SDN control layer and the application layer is com-
municated via the northbound interface, and its interface
protocol has not yet been unified. It can be seen from Fig. 9,
control layer provides a lot of extensible API interface for
the application layer, each API interface corresponds to an
application, so the SDN can carry a variety of network
services. Because of the flexible extendibility, SDN can

Fig. 8 SDN Framework
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Fig. 9 SDN layer communication mode

provide the required API interface for the new web service
in time. In the SDN, the underlying switches and control
layer communicate through the southbound interface. The
controller sends the corresponding flow table to it through
the interface, and then the data transition is performed by

the switches. The protocol to the southbound interface is the
OpenFlow protocol.

So we can see that SDN is an architecture purporting
to be dynamic, manageable, cost-effective, and adaptable,
seeking to be suitable for the high-bandwidth, dynamic
nature of today’s applications.

2.2 Space-based network based on SDN

The key problems in space-based network are long delay,
high bit error rate and high interruption probability. The
topology of LEO satellite network is highly dynamic and
the satellite communication has high bandwidth. So the
SDN network is suitable for space-based network. With the
increase of the number of satellites in LEO satellite network,
the management of the network has become even more diffi-
cult. Combining SDN with traditional space-based satellite
network makes management and maintenance easier and
can better improve the performance of the network.

Figure 10 shows the satellite network framework based
on SDN. The LEO satellite is in the data layer of the SDN
network, they are based on OpenFlow protocol and trans-
mitting data according to the instruction of the controller.
The ground control station is in the control layer of the SDN
network and it has a full network view, so that the ground

Fig. 10 Satellite network
framework based on SDN
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control station can provide the best path for data transmis-
sion as well as real-time maintenance and management of
the network.

3 Routing algorithm for leo network

3.1 Routing algorithm based on virtual topology

Figure 11 shows the basic idea of the routing algorithm
based on the virtual topology. The main idea is to divide
the satellite period into several short time slices, that is
[t0, t1), [t1, t2), [t2, t3), ..., [tn−1, tn). Because the topology
of satellite network exhibits periodic changes, the position
of satellites in orbit can be predicted, and the dynamic satel-
lite network topology is regarded as a static topology in each
time slice as long as the time slice is small enough. The
main advantage of the routing algorithm based on the idea
of virtual topology is that it considers the topological struc-
ture of the high speed low orbit satellite network as a series
of continuous static topological structures sorted by time
slices, routing can be computed on the corresponding static
topology at each time interval, thus enabling smaller rout-
ing computation expense. The disadvantage of it is that it
needs a lot of storage space to store the routing information
of each time, Moreover, the routing algorithm based on the
idea of virtual topology is badly adapt to the congestion of
the network link in real-time, the change of network traffic
flow and the real-time processing of network fault.

As Fig. 12 shows, in order to solve the problem that
the poor adaptability of the algorithm to the network unex-
pected situation, we can compute the static routes corre-
sponding to each time slice in real time.

When calculateing the corresponding route for each time
slice, we consider the DFS algorithm and the Dijkstra algo-
rithm, and integrated use of two algorithms to improve the
efficiency of calculation.

3.2 Depth-first-search algorithm

DFS algorithm is a traditional traversal search algorithm in
routing calculation, given the source node and the destination

Fig. 11 Topology based on virtual topology strategy

Fig. 12 Advanced routing algorithm based on virtual topology

node, DFS can find all the path between two nodes.DFS
algorithm is used to calculate the desired path between two
points, the algorithm follows a search strategy for vertical
depth search of a directed graph or an undirected graph
structure. For a branch under a node, only when the bottom
of the branch is searched, is it returned to the starting point
of the branch and searched for the next branch.

In depth first search algorithm, searching process starts
from the given source node. For the currently searched ver-
tex v, the search continues along the edges between the two
vertices if the vertex has an adjacent node that has not been
accessed.

Each time we visit a link and the link cost is recorded, so
we can know the path cost of each path we find, and choose
the better path through comparison.

Search along the vertex v until the edges from the begin-
ning of the v are all search, and the search will come back
to the last node to the vertex v. The end of the process of
depth search is the path between the source nodes and all
the other nodes is searched. If the destination node is given,
each time it is searched to the destination node, the path is
marked until all branches to the destination node have been
searched, and the entire depth search process is completed.

As Fig. 13 shows, v stands for the source node, D

stands for destination node. When we start from v, we call
DFS(v, f lag), in which f lag means whether the destina-
tion node D is visited. If destination node D is unvisited,
then f lag = 0 and call DFS(vnext , 0) and when the next
node does not have adjacent node, we go back to the source
node and call DFS(v, 0).
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Fig. 13 DFS search process

If destination node D is visited, then f lag = 1,
EnterD − 1. EnterD stands for the in-degree of the desti-
nation node, if EnterD = 0, we go back to the source node
and continue searching until EnterD = 0, depth search
process is complete.

Figure 14 shows that the core idea of the DFS algorithm
is recursion. For a given vertex, DFS looks for its adjacency
point. For adjacent nodes that are not accessed, we regard
this node as a starting point and use DFS algorithm until all
the nodes is visited, the entire searching process is complete.

3.3 Joint DFS and Dijkstra algorithm

The Dijkstra algorithm is a classic routing algorithm for
finding the shortest path. The algorithm is used to find the

Fig. 14 Main idea of DFS

path with the least link cost from the source node to all other
nodes in the network. But for a given source node and the
destination node of the directed graph, the classical Dijkstra
algorithm needs to be improved appropriately, the cycle will
be end as soon as the destination node is marked, output the
shortest path between the source node and the destination
node and the shortest path link cost.

DFS algorithm can find all the communication paths
between the source node and the destination node to meet
the communication requirements because they will search
each node of the graph. Therefore, all link information can
be obtained, and the reliability of the result is better. But
because it requires every node in the topological graph to be
searched, the time complexity of the algorithm is very high,
which is exponential order O(n!). Thus, when the number
of satellite nodes in the satellite communication network
reaches hundreds or more, the computational efficiency of
the algorithm will be very low. The topology of the satellite
may have changed as it has not calculated the desired path.

Pruning can be employed in order to improve the effi-
ciency of DFS algorithm. The key idea of pruning is to
remove the useless search branches. The commonly used
pruning methods are feasible pruning, probabilistic pruning,
optimality pruning, etc.

Because the Dijkstra algorithm only needs to find the
link with the minimum cost between the source node and
the destination node, the time complexity of the algorithm
is low, which is square order O(n2), so the calculation effi-
ciency is higher. But it only finds part of the path with
minimal link cost, so that when looking for the path, it may
skip the necessary nodes required, and the path found does
not meet the requirements, leading to routing failure.

Figure 15 shows one part of the topology of a satellite
communication network, in which S represents the source
satellite, D represents the destination satellite, and S1 is the
necessary satellite node. The Dijkstra algorithm will choose
the path with smaller link cost according to the link cost,
the calculated transport path is S − S2 − D, it can be seen
that the path does not include the necessary satellite node S1

Fig. 15 Partial topology
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which does not meet transmission requirements. The DFS
algorithm will compute all the transport paths between the
source node and the destination node, so the result contains
two paths S−S2−D and S−S1−D, according to the com-
munication requirements, thus the transmission path can be
selected as S − S1 − D with requirement. Therefore, when
calculating routing information in the LEO satellite net-
work, the advantages of the two algorithms can be taken into
account. Thus, combining the two algorithms can not only
improve the efficiency of the algorithm, but also improve
the reliability of the required path found.

In the case of a large number of satellite nodes, we inte-
grate DFS and Dijkstra algorithms together to improve the
efficiency of calculation. According to the network real-
time situation, dividing the LEO satellite network into a
series of clusters. Thus, the DFS algorithm and the Dijkstra
algorithm are adopted according to the link conditions of
different groups of stars. The Dijkstra algorithm is used in
the group where the network traffic is large and the network
congestion is high and the DFS algorithm is adopted at the
group where there is a large number of necessary satellites.
It can not only improve the efficiency of calculating the
communication path, but also avoid the limitation of Dijk-
stra algorithm, which may cause the result of calculation
which dose not meet the requirements.

Figure 16 shows the process of joint DFS and Dijkstra
algorithm. Firstly, in the process of satellite communica-
tion, we set the source satellite, the destination satellite and
the set of necessary satellite nodes. At the source satel-
lite node, the Dijkstra algorithm is used to find the path
with the minimum link cost from other satellite nodes to
the source satellite nodes. When the path with minimal link
cost between the first found necessary satellite node and the
source satellite is found, the Dijkstra algorithm ends and
Subsetnode−1, in which Subsetnode stands for the number
of necessary satellite node required. Then, we use the first
found necessary satellite nodeN1 as start node, adopting the
DFS algorithm, that is DFS(N1), every time a necessary
nodeNi is searched, checking whether Subsetnode is equal
to 0, if Subsetnode �= 0, we have and continue using the
DFS algorithm for deep searching, that is DFS(Ni), else if
Subsetnode = 0, the DFS algorithm ends. At last, we use
the last found necessary satellite node as the start node and
adopt the Dijkstra algorithm to find the path with minimal
link cost between the last found necessary satellite node and
the destination satellite. By integrating the above steps, we
can find a communication link that meets the requirements.

In this way, the computational time can be greatly
reduced by reducing the size of the problem scale of the
DFS algorithm, and because the use of depth first search
does not skip the necessary satellite nodes, the reliability
of the path is improved. The Dijkstra algorithm can effec-
tively avoid the satellite nodes with larger traffic distribution

Fig. 16 Joint DFS and Dijkstra algorithm

in the satellite group beyond the necessary satellite nodes,
which reduces the queuing time of data packets in the on-
board memory, and reduces the average end-to-end delay of
data communications, thus improving the effectiveness of
the satellite network.

4 Simulation and analysis

4.1 Original DFS algorithm

DFS algorithm can find a path with a given source node, a
destination node and necessary nodes set to meet the com-
munication requirements. With DFS algorithm, each node
of the given network topology will be searched. We will
set flags to the nodes required to go through, and flag will
be marked when the required node is went through. When
all the flags are marked, the communication meeting the
communication requirement is precisely found.

Figure 17 shows the comparison of routing discovery
time of the DFS algorithm as the number of nodes changes
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Fig. 17 Routing discovery time of DFS algorithm with 4 necessary
nodes

in the network. When the number of nodes in the network is
20, and the number of necessary nodes is 4, the time to cal-
culate a required path is about 0.4s∼0.5s. When the number
of nodes in the network increases to 50, and the number of
necessary nodes remain unchanged, the time to calculate a
required path is 1.2s∼1.3s, the computation time increases
by more than two times when the number of nodes is 20.

The DFS algorithm requires to go through the whole net-
work topology, and the algorithm complexity is very high,
which is exponential complexity O(n!), the corresponding
time frequency function is T (n) = C ∗ n!, where C is an
constant. It can be seen from the time frequency function
that, with the increase of the number of satellite nodes in
the network, DFS algorithm calculates the path satisfying
the requirements of the communication with an exponential
time increase.

Figure 18 shows calculation result of the DFS algorithm
when the number of nodes in the network is 300. Having ran
for 10 minutes, DFS algorithm did not find the communica-
tion path needed. After 10min, the network topology of LEO

Fig. 18 Performance of DFS algorithm when nodes is 300

satellite network will change and be not consistent with
the requirements of the routing algorithm based on virtual
topology. Thus the efficiency of the DFS algorithm is very
low when the number of nodes in the network is very large.

So the key factor affecting the performance of DFS algo-
rithm is the number of nodes in the network. When the
number of nodes in the network is large, the performance of
the DFS algorithm is poor.

4.2 Joint DFS and Dijkstra algorithm

The DFS algorithm is a classic routing algorithm. Through
analysis we can see the time complexity of the DFS algo-
rithm is very large, so the efficiency of DFS algorithm is
greatly affected by the scale of the problem. The problem
refers to the number of nodes in the network. Therefore,
in order to improve the efficiency of the algorithm, we
can combine the algorithm with lower time complexity, and
make use of the advantages of the two algorithms to obtain
better routing performance.

The Dijkstra algorithm aims to find the shortest path from
all other nodes in the network to the source node. For a given
destination node, the Dijkstra algorithm ends the calculation
by finding the shortest path between the source and destina-
tion nodes, which avoids the additional computation cost of
additional routing computation.

Figure 19 shows the simulation result of the routing dis-
covery time of the DFS algorithm and the joint DFS and
Dijkstra algorithm. When the number of nodes in the net-
work is 20, the computation time of using the joint DFS and
Dijkstra algorithm is about 0.4s∼0.5s, and the computation
time is basically the same as that of DFS algorithm. It can
be seen that when the number of nodes in the network topol-
ogy is small, the efficiency of the DFS algorithm and the
DFS and Dijkstra algorithm is basically the same. When the

Fig. 19 Comparison between DFS algorithm and joint algorithm
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number of nodes in the network increases to 50, the com-
putation time of using the DFS and Dijkstra algorithm is
increasing, but it is a small increase, and the average com-
puting time is still 0.4s∼0.5s. But the computation time of
DFS algorithm is increased to 1.2s∼1.3s. It can be seen that
compared with the DFS algorithm the computation time of
the joint DFS and Dijkstra algorithm is less affected by the
increase of the number of nodes in the network.

Since the Dijkstra algorithm only considers the path with
smaller link cost when routing, in the calculation of the
Dijkstra algorithm, the considered link cost includes the dis-
tance between two nodes and the link load between two
nodes, so it avoids many costly branches of the link. There-
fore, the size of the network branches gone through by the
Dijkstra algorithm is greatly reduced, so the time complex-
ity of the Dijkstra algorithm is low, which is square order
complexity O(n2). The corresponding time frequency func-
tion is T (n) = C ∗ n2, where C is an constant. It can be
seen from the time frequency function that with the increase
of the number of nodes in the network, the time complex-
ity of the Dijkstra algorithm grows in square, compared to
exponential complexity O(n!), the time complexity of the
Dijkstra algorithm is very low, so when the number of nodes
in the network is large, the computational efficiency of the
joint DFS and Dijkstra algorithm is better than that of the
DFS algorithm.

From the above analysis, we can know that the compu-
tation efficiency of DFS algorithm is very low when the
number of nodes in the network reaches hundreds, it does
not meet the requirements of the routing algorithm in satel-
lite networks. However, the computational efficiency of the
joint DFS and Dijkstra algorithm is still relatively high,
it can better adapt to the routing computation in satellite
networks.

Figure 20 shows how the routing discovery time of the
joint DFS and Dijkstra algorithm changes when the num-
ber of nodes changes in the network. It can be seen that
the computation time of the joint DFS and Dijkstra algo-
rithm is less affected by the increase of the number of
nodes in the network. With the increase of the number of
nodes in the network, the time to calculate the required path
increases in general, but the trend is very small. When the
number of nodes in the network is 20, the routing discov-
ery time is about 0.4s∼0.5s; when the number of nodes is
50, the route discovery time is still 0.4s∼0.5s. When there
are hundreds of nodes in the network, the DFS algorithm
can not get result in required time, so it dose not meet the
requirement of routing calculation in the LEO satellite net-
work. But the joint algorithm can still calculate the required
communication path in a relatively short time. When the
number of nodes in the network is 300, the routing discov-
ery time is about 0.5s∼0.6s. When the number of nodes in
the network increases to 600, the route discovery time is

Fig. 20 Routing discovery time of the joint algorithm with 4 neces-
sary nodes

about 0.6s∼0.8s. It can be seen that the routing discovery
time is less than 1s when the number of nodes is 600, within
this shorter time interval, the dynamic topology of the LEO
satellite communication network can be viewed as fixed, the
route of satellite network can be calculated according to the
method of calculating the route of the static topology, thus
effectively shielding the dynamics of the topology of the
satellite communication network.

From the above analysis, we can see that the number of
nodes in the network has little influence on the computa-
tional efficiency of the joint DFS and Dijkstra algorithm
and it is not the core factor that affects the efficiency of the
algorithm.

Figure 21 shows the influence of the number of necessary
nodes on the routing discovery time of the joint DFS and

Fig. 21 Influence of necessary nodes number on the joint DFS and
Dijkstra algorithm
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Dijkstra algorithm.The number of the nodes in this simula-
tion is 300. When the number of necessary nodes is 4, the
route discovery time is about 0.5s∼0.6s. When the number
of necessary nodes is 12, the route discovery time is about
0.7s∼0.8s and when the number of necessary nodes is 20,
the route discovery time is about 0.8s∼0.9s.

It can be seen that the number of necessary nodes has
greater impact on the computational efficiency of the algo-
rithm more than the number of nodes in the network.
Because the idea of the joint DFS and Dijkstra algorithm is
to use the Dijkstra algorithm to find the first necessary node.
Then, the node is marked and the first found node is used as
the first node for DFS search until all the necessary nodes
are searched, the DFS search is over. Then Using the last
found necessary node as the starting node finds the shortest
path between it and the destination node with the Dijkstra
algorithm. This not only improves the efficiency of the algo-
rithm, but also avoids the fact that the necessary nodes are
not in the calculated path.

The number of necessary nodes actually determines the
scale of the problem of the DFS algorithm. The time com-
plexity of DFS algorithm is O(n!), but the time complexity
of the Dijkstra algorithm is only O(n2), therefore as the
number of network nodes increases, the DFS algorithm runs
much longer than the Dijkstra algorithm. Actually, the com-
putational efficiency of the algorithm is affected more by
the number of necessary nodes than by the number of nodes
in the network topology and the algorithm should be opti-
mized according to the given conditions when the algorithm
is improved.

4.3 Joint DFS and Dijkstra Algrithom in iridium system

To verify the performance of the proposed algorithm, we
refer to iridium system model. We define that the latitude
between 80 and 90 degrees is the polar region. When the
satellite is running into the polar region, the satellite orbit
is not connected by the inter satellite links, and the satel-
lites can not communicate with each other. The topological
structure of the iridium system is written with C language
and the operating environment is VS2013.

Due to the use of routing algorithm based on virtual
topology, and the 100 minutes operation cycle of iridium
system, the iridium network is decomposed into 100 contin-
uous time slices, each time slice is 1 minutes. The duration
of the inter satellite links between two satellites in adjacent
orbits is 13 minutes, thus the topological structure of the
iridium system can be regarded as fixed within 1 minute and
its dynamic topology is decomposed to 100 static topology
structure.

For the 100 static topologies generated, respectively
using the DFS algorithm and the joint DFS and Dijkstra
algorithm for calculation. And the routing discovery time of

each topology and the link cost of the corresponding path
are stored, and the average end-to-end delay is calculated.

Figure 22 shows the comparison of route discovery time
between two algorithms. It can be seen that when calcu-
lating the 100 consecutive static topology on the iridium
system, the route discovery time of the DFS algorithm is
more than the joint DFS and Dijkstra algorithm. The routing
discovery time of the DFS algorithm is about 0.5s∼0.6s, the
average is about 0.55s and the routing discovery time of the
joint DFS and Dijkstra algorithm is about 0.4s∼0.5s, with
an average of about 0.45s.

Since the joint DFS and Dijkstra algorithm integrated
using two algorithms at a time, it greatly reduces the time
complexity of the algorithm so when the number of nodes in
the network and the number of the necessary nodes is fixed,
the computational efficiency of the joint DFS and Dijkstra
algorithm is better than that of the DFS algorithm.

Figure 23 shows the comparison of average end-to-end
delay in Iridium system with using the two algorithms. The
transmission delay is calculated according to the link cost
of the transmission path corresponding to each topology,
the transmission path is calculated repectively by the DFS
algorithm and the joint DFS and Dijkstra algorithm. It can
be seen that the average end-to-end delay is less than that
calculated by the DFS algorithm when the packets are trans-
mitted by the path calculated by the joint DFS and Dijkstra
algorithm. The average end-to-end delay of the path calcu-
lated by the joint DFS and Dijkstra algorithm is 0.07s∼0.1s,
while the average end-to-end delay of the path calculated by
the DFS is 0.1s∼0.15s.

Since the joint DFS and Dijkstra algorithm considers the
advantages of the two algorithms at a time and the Dijkstra
algorithm could avoid the link with higher cost, so the link
cost of the calculated path for data transmitting is less than

Fig. 22 Comparison of route discovery time
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Fig. 23 Comparison of average end-to-end delay

the link cost calculated by the DFS algorithm. The corre-
sponding average end-to-end delay of the data transmission
is decreasing as well.

4.4 Proposed algorithm for hybrid space-based network
based on SDN

This section focuses on the performance simulation and
analysis of SDN based LEO networks and traditional LEO
network.

At present, due to the rapid increase in the number of net-
work users, along with the rapid growth of communications
business, the requirement of the quality of communication
services for users is getting higher and higher, fast access
to the network in real time is the key factor to ensure the
quality of network service. In order to realize the global
seamless coverage of satellite signals, the number of satel-
lite nodes in satellite networks is also increasing, so the
ability to grasp the whole network becomes the core issue
of satellite communication.

In the SDN network, the controller has a global view of
the network and plays the role in the unified configuration and
management of the network. It meets the requirements of
satellite communication network development. So we inter-
grate SDN’s ideas with traditional space-based networks.

Fig. 24 Hybrid space-based
network based on SDN
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The space-based network based on SDN is mainly com-
posed of satellite network and terrestrial network. The
satellite networks include LEO satellites, MEO satellites,
and GEO satellites. In the ground network, the server, net-
work control center, firewall and PEP are in the application
layer of SDN network, they access the SDN control layer
through the core network. The ground control station is in
the SDN control layer, it grasps the whole network informa-
tion by interacting with the units in the network to get the
real time information, controls and manages the network at
the same time. The control station sends the instructions to
the GEO satellites in the space-based network, and the GEO
satellites translate and transmit these instructions to the LEO
satellites to control the data transmitted in the network.

Figure 24 shows the network infrastructure of hybrid
space-based network which is composed of GEO and LEO
based on SDN. When there is a new satellite in the LEO
satellite network, the ground station will link with the satel-
lite and establish a communication link, at the same time,
the corresponding configuration information is sent to the
GEO; the control instructions are translated by the GEO and
sent to the LEO satellite, all the nodes in the LEO network
are updated uniformly so that a satellite is connected to the
network. As a result of the command issued by the control
station, and then unified configuration to the LEO satel-
lite by GEO, this greatly improves the efficiency of satellite
access, and makes the network of the space-based network
becoming more flexible.

SDN network separates the data plane and the control
plane, using the network centralized control mode, so it can
realize the rapid deployment of updated information of the
satellite network, including the switching of the network
link, the data traffic in the network distribution, network
topology changes and other information. SDN provides a

Fig. 25 Comparison of average end-to-end delay

flexible, detailed and scalable network architecture for tra-
ditional LEO network. Figure 25 shows the comparison of
average end-to-end delay performance between LEO net-
works based on SDN and traditional LEO networks. It can
be seen that the average end-to-end delay of SDN based
LEO network is generally lower than that of traditional LEO
networks.

Since the ground control station of SDN based LEO net-
work is in the control layer of the network, it has all the
information of satellite nodes in the network, including the
load of satellite nodes, the link condition of inter satellite
links. Then, the controller collects the information in real
time, analyzes and processes the traffic information of the
whole network, and calculates the best transmitting path of
the packet. So when the packet transmission is carried out,
the region with dense network traffic and nodes with large
load are avoided, thus effectively avoid the packet wait-
ing for so long in the satellite node buffer queue and the
transmission delay is effectively reduced. And because the
satellite node is only responsible for data transmitting, it
greatly reduces the additional power cost of satellite equip-
ment, improves the data forwarding efficiency of satellite
nodes and further reduces the data transmission delay.

Figure 26 shows the comparison of packet loss rate
performance between LEO networks based on SDN and tra-
ditional LEO networks. It can be seen that the packet loss
rate of SDN based LEO network is generally lower than that
of traditional LEO networks.

Because in SDN network, the path for data transmitting is
the best transmission path calculated according to the whole
network traffic and node information, it effectively avoids
packets going through the nodes with heavy load, thereby
reducing the probability of packet retransmission or loss due
to packet waiting in the buffered queue for a long time.

Fig. 26 Packet loss rate comparison
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And in the LEO network based on SDN, the control layer
can grasp the condition of communication link in real-time,
and can maintain the stability of the whole network in real-
time according to the link condition and then reduce the
probability of communication interruption. Therefore, the
application of SDN network structure improves the stabil-
ity of the network, so the data transmission is more stable,
which effectively reduces the packet loss rate in the entire
data communication process.

Based on the above analysis, we can see that the com-
bination of SDN can break through the limitations of tradi-
tional network architecture and improve the communication
performance of the network.

5 Conclusion

In this paper, a LEO satellite network model is built, and the
inter-satellite link characteristics in the model are analyzed.
When considering the routing algorithm in LEO network,
we adopt the routing algorithm based on the idea of virtual
topology. The algorithm decomposes the operating cycle
of the satellite into continuous time slices, thus the satel-
lite topology can be regarded as a static topology in the
period of time as long as the time slice is short enough.
Thus, the efficiency of routing algorithm dealing with each
time slice decides the performance of the routing algorithm
based on virtual topology. When routing the static topol-
ogy within each time slice, the idea of DFS algorithm is
adopted to improve the computational efficiency and the
reliability. Based on it, a novel algorithm joint DFS and the
Dijkstra algorithm is proposed for the huge numbers of LEO
mobile satellite network based on SDN. As the simulation
results show, the performance of the joint DFS and Dijk-
stra algorithm is better than the traditional DFS algorithm.
Moreover, the communication performance of LEO network
based on SDN and traditional LEO network is compared
and analyzed. The results show that the LEO network based
on the SDN architecture breaks through the performance
limitations of the traditional network architecture.
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